Euler–Poincaré Characteristic and Phase Transition in the Potts Model

نویسندگان

  • Philippe Blanchard
  • Santo Fortunato
  • Daniel Gandolfo
چکیده

Recent results concerning the topological properties of random geometrical sets have been successfully applied to the study of the morphology of clusters in percolation theory. This approach provides an alternative way of inspecting the critical behaviour of random systems in statistical mechanics. For the 2d q-states Potts model with q ≤ 6, intensive and accurate numerics indicates that the average of the Euler characteristic (taken with respect to the FortuinKasteleyn random cluster measure) is an order parameter of the phase transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Euler-Poincaré characteristic of index maps∗

We apply the concept of the Euler-Poincaré characteristic and the periodicity number to the index map of an isolated invariant set in order to obtain a new criterion for the existence of periodic points of a continuous map in a given set.

متن کامل

A theorem of Poincaré-Hopf type

We compute (algebraically) the Euler characteristic of a complex of sheaves with constructible cohomology. A stratified Poincaré-Hopf formula is then a consequence of the smooth Poincaré-Hopf theorem and of additivity of the Euler-Poincaré characteristic with compact supports, once we have a suitable definition of index. AMS classification: 55N33 57R25

متن کامل

About the Euler-poincaré Characteristic of Semi-algebraic Sets Defined with Two Inequalities

We express the Euler-Poincaré characteristic of a semi-algebraic set, which is the intersection of a non-singular complete intersection with two polynomial inequalities, in terms of the signatures of appropriate bilinear symmetric forms.

متن کامل

How Euler Would Compute the Euler-poincaré Characteristic of a Lie Superalgebra

The Euler-Poincaré characteristic of a finite-dimensional Lie algebra vanishes. If we want to extend this result to Lie superalgebras, we should deal with infinite sums. We observe that a suitable method of summation, which goes back to Euler, allows to do that, to a certain degree. The mathematics behind it is simple (and known), we just glue the pieces of elementary homological algebra, first...

متن کامل

Determination of the order of phase transitions in Potts model by the graph-weight approach

We examine the order of the phase transition in the Potts model by using the graph representation for the partition function, which allows treating a non-integer number of Potts states. The order of transition is determined by the analysis of the shape of the graph-weight probability distribution. The approach is illustrated on special cases of the one-dimensional Potts model with long-range in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001